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ABSTRACT

This report presents an empirical method for predicting the jet mixing noise levels of cold

flow rectangular jets. The report presents a detailed analysis of the methodology used in

development of the prediction method. The empirical correlations used are based on

narrow band acoustic data for cold flow rectangular model nozzle tests conducted in the

NASA Langley Jet Noise Laboratory. There were 20 separate nozzle test operating

conditions. For each operating condition 60 Hz bandwidth microphone measurements

were made over a frequency range from 0 to 60,000 Hz. Measurements were performed

at 16 polar directivity angles ranging from 45 degrees to 157.5 degrees in 7.5 degree

increments. At each polar directivity angle, measurements were made at 9 azimuth

directivity angles including 0, 15, 30, 45, 60, 75, 90, 180, and 270 degrees. The report

shows the methods employed to remove screech tones and shock noise from the data in

order to obtain the jet mixing noise component. The data reduction is predicated on the

jet mixing noise spectra characteristics being similar to the spectra characteristics of a

circular jet.

For each test point, the jet mixing noise was defined in terms of one third octave band

spectral content, polar and azimuth directivity, and overall power level. Empirical

correlations were performed over the range of test conditions to define each of these jet

mixing noise terms as a function of aspect ratio, jet velocity, and polar and azimuth

directivity angles. The report presents the method for predicting the overall power level,

the average polar directivity, the azimuth directivity, and the location and shape of the

spectra for jet mixing noise of cold flow rectangular jets.

It is recommended that this study be extended to include higher temperature rectangular

jets and that additional tests be performed to obtain jet mixing noise data for higher

temperature rectangular jets.
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INTRODUCTION

Current high speed research aircraft concepts may employ rectangular designed
exit nozzles. To determine the Effective Perceived Noise Levels associated with

jet mixing noise during takeoff and landing operations, it is necessary to know the

spectra content of the jet mixing noise of rectangular jets at each polar directivity
angle and azimuth directivity angle.

This report presents a method for predicting the jet mixing noise characteristics
of cold flow rectangular jets. The rectangular jet mixing noise characteristics

consist of defining the overall power levels, the average polar directivity, the
azimuth directivity, and then the spectral content. Although this method is

applicable to cold flow jets, it demonstrates that a rectangular jet mixing noise
method could readily be developed for hot jets.

The method was empirically derived from cold flow rectangular jet model tests
performed in the NASA Langley Jet Noise Laboratory. The measured jet noise

levels include screech tones and shock noise in addition to the jet mixing noise.
Included in this report are the data reduction methods employed to obtain only
the jet mixing noise component.

TEST DESCRIPTION

The test description includes a description of the rectangular jet nozzle
configurations, the test measurements, and the nozzle operating conditions.

Description of Nozzle Configurations

The width of both the nozzle throat and nozzle exit for all four rectangular nozzles
were 4.00 inches. Nozzle 1 has a design exit Mach number of 1.66. The throat
height was 2 inches and the exit height was 2.60 inches. Nozzles 3, 4, and 5
have a design exit Mach number of 1.35. For nozzle 3 the throat height was

1.081 inches and the exit height was 1.177 inches. Nozzle 4 has a throat height
of 0.690 inches and an exit height of 0.751 inches. Nozzle 5 had a throat height
of 0.526 inches and an exit height of 0.573 inches. Thus the exit plane aspect

ratios for nozzles 1, 3, 4, and 5 were 1.538, 3.397, 5.324, and 6.985 respectively.
Since the nozzles were operated at various exit pressure ratios, both the exit
area and the associated aspect ratio of the fully expanded jet varied from the
nozzle design values. The computed aspect ratios are predicated on two

dimensional expansion, and assume the width of the jet exit flow will be

maintained at 4.00 inches even for the under expanded nozzle flow conditions. It
should be noted that the walls of these nozzles were not contoured and that the

exhaust velocity along the upper and lower surfaces was at an angle and not

perpendicular to the nozzle exit plane. Figure 1 shows a sketch of a typical



rectangular nozzle and the dimensions of the nozzles. The nozzle descriptions
are taken from the test data report [ref 1].

Figure 1 also shows the polar directivity angles and the azimuth directivity angle.
The line connecting the center of the throat plane and the exit plane is the
directivity reference line. The azimuth is referenced from the line that bisects the
top and bottom walls of the exit plane. At 0 degrees azimuth angle, the 90-
degree polar directivity angle point is directly above the center of the nozzle exit
area. Similarly, at 90 degrees azimuth angle, the 90-degree polar directivity
angle point is on the line that bisects the right and left sides of the exit plane.

Acoustic Test Measurements

For each test, microphone data were taken at a distance of 12 feet from the

center of the nozzle exit plane at 16 polar directivity angles ranging from 45
degrees to 157.5 degrees in increments of 7.5 degrees. The polar directivity
angles are measured in an arc starting with the nozzle inlet being at 0 degrees,

and the nozzle exit being at 180 degrees. The azimuth directivity angles varied
from 0 degrees to 90 degrees in 15-degree increments. Also microphones were

placed at azimuth directivity angles of 180 degrees and 270 degrees, making a
total of 9 azimuth directivity angles. Thus for each test, there were 144
microphone positions.

The microphone data at the 12-foot radius at each azimuth directivity angle and

polar directivity angle consisted of 1 Hz average power spectral densities (PSDs)
for each 60 Hz frequency bandwidth over the frequency range from 0 to 61,380
Hz. Thus for each test, there were 1024 PSDs at each of the 144 microphone

positions. Again the test data report [ref 1] describes the microphone positions
and the spectra measurements.

Nozzle Operating Conditions

The nozzles were tested at a range of operating pressure ratios from under
expansion, to over expansion. The ratios of the exit pressure of the jet to the free
stream ambient pressure, if the flow were allowed to expand to the nozzle exit,
were varied from 0.65 to 1.45 and include 0.65, 0.85, 1.0, 1.25, and 1.45. The

tests consist entirely of cold flow jet data, where the ratio of the jet total
temperature to the ambient temperature was near 1.00.

A test point consists of a particular nozzle and nozzle pressure ratio. There are

20 test points in this study. At each microphone position of each test point there

is a corresponding set of flow conditions consisting of total pressure, PTjet,

ambient pressure, Poo, jet total temperature, TTjet, ambient temperature, Too, and
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fully expanded jet flow area, Aj.

From the ambient temperature and the ambient pressure, the ambient speed of

sound, C=, and the ambient density, p=, were computed as follows:

C== (7g RT_) °5 (1)

where y is the ratio of specific heat for air,

R is the gas constant for air

and g is the gravitational constant.

p= = P=/(g R T=) (2)

The jet Mach number is computed from the ratio of the jet total pressure, PTjet,

to the ambient pressure,P=, as follows:

Mj = { [ ( PTjet / P=) [(7-1.o)/),] _ 1.0 ] * 2.0/(y-l.0) }0.5 (3)

The jet static temperature, Tj, is defined from the jet total temperature, TTjet,

and the jet mach number, Mj, as follows:

Tj = TTjet / { 1.0 + [(7- 1.0)/2.0] * Mj 2} (4)

The jet velocity, Vj, and the jet density, p j, are defined from the jet temperature,

Tj, and the jet Mach number as follows:

Vj = Mj * ( 7 g R T j) °5 (5)

PJ = PTjet / (g R T j) (6)

The fully expanded jet exit area, A j, is computed from the nozzle throat area,

Ath, and the jet Mach number, Mj, as follows:

Aj = Ath / Mj * { [ 2.0 + (7- 1.0) * Mj2] / (7+ 1.0) } { ()'* 1"°) / [2"0. ()'' 1"°) ] } (7)

The equivalent circular jet diameter, Dj, is computed from the jet area, Aj, as
follows:

Dj = ( 4.0 * Aj / = )0.5 (8)
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It should be noted that for each test point, measurements were often performed

over a period of time, so that there were variations in the nozzle flow properties
associated with each test.. Each of these properties were averaged over the 16

polar directivity angles, e, associated with each azimuth directivity angle, (I), to

obtain the average flow properties for each azimuth directivity angle for each test
point. These resultant flow properties were again averaged over the 9 azimuth

directivity angles to obtain the overall average flow properties for each test point.

Table I presents the flow properties at each azimuth directivity angle and the
average flow properties for each test point. The flow properties listed in Table I
include total temperature, total pressure, ambient pressure, and the ambient

temperature. The overall average operating flow conditions at each test point
were used for predicting the circular jet noise and the shock noise characteristics
for that test point.

REDUCTION OF DATA TO OBTAIN ONE-THIRD

OCTAVE BAND JET MIXING NOISE LEVELS

There are several steps involved in converting the measured data to one-third
octave band jet mixing noise data. The measured data includes screech tones

and shock noise as well as jet mixing noise. The first step is to convert the 1 Hz
bandwidth PSDs to 60 Hz bandwidth Sound Pressure Levels (SPLs). The
second step is remove the screech tones from the narrow band SPL data. The
third step is to convert the 60 Hz bandwidth SPLs to one-third octave band SPLs.

The fourth step involves messaging the measured data to remove the shock
noise. These steps should provide the jet mixing noise levels at each test point.

Conversion of Measured Data to Sound Pressure Levels

For each test point at each microphone position, the 1 Hz bandwidth PSDs were

converted to 60 Hz bandwidth by increasing the PSD value by the 60 Hz
bandwidth as follows:

SPL(test,e,(1), f) = PSD(test,&_,f) + 10.0 * Ioglo (60) (9)

Spectral plots were generated for each of the nozzle test conditions at each
frequency, freq, and azimuth directivity angle, (I). Figures 2a through 2d show

typical spectral plots at azimuth directivity angles of 0 degrees. Each figure
contains spectral plots at 16 polar directivity angles ranging from 45 degrees to
157.5 degrees.

Figures 2a and 2b show the narrow band spectral distribution for the fully

expanded jet (PTjet/Poo = 1.00) for nozzle 1 and nozzle 5 respectively. Figure 2c
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presents the narrow band spectra distribution for nozzle 4 at a nozzle jet
pressure ratio of 0.85. Figure 2d shows the narrow band spectra distribution for
nozzle 5 at a nozzle jet pressure ratio of 1.45. Figures 2b through 2d show that
there are numerous tones in the narrow band spectra. It is thought that these are
screech tones associated with the fact that the flow is supersonic.

Removal of Screech Tones

A review of the narrow band spectral distribution plots of each test point showed
that for the five different operating pressure ratios, there were no screech tones
associated with the low aspect ratio nozzle, nozzle 1. This was true even at the

very high nozzle pressure ratio (PTjet / Poo= 1.45). Also at the lowest operating

pressure ratio (PTjet / Poo= 0.65), there were no screech tones for any of the four

different nozzle configurations. This is probably due to the fact that the fully
expanded jet Mach number is very close to 1.0. Table II presents a range in the

number of tones associated with each azimuth directivity angle for each test
point.

Associated with each azimuth directivity angle are 16 polar directivity angles. A
review of Figures 2b through 2d show that as directivity angle is increased, the
number and intensity of the screech tones decreases. This is also

representative of all the other test points where screech tones exist. Table II

shows that for the four highest nozzle operating pressure ratios, as the nozzle
number increased and thus the nozzle aspect ratio increased, the number of

screech tones increased. Table II also shows that as azimuth directivity angle
increased the number of screech tones decreased. The nozzle exit is narrowest

at 0 degrees azimuth angle, and the nozzle exit is widest at the 90 degrees
azimuth angle. If these nozzles were truly two- dimensional, the number of
screech tones at each azimuth angle should have very little variance.

In order to obtain the jet mixing noise, it was necessary to remove the screech
tones. A program was developed to search out and remove the screech tones.

This was accomplished by dividing the data at each microphone position into
groups of 10 narrow band SPL values and then fitting a quadratic curve to each
group. The quadratic curve points were then compared with the data and a
standard deviation was computed. If the standard deviation of the curve fit was
less than 0.60 dB, then it was assumed that there was no screech tone in that

group. However if the standard deviation was greater than 0.60 dB, then a

search was performed on both that group of 10 SPLs and the next group of 10
SPLs to find the peak screech tone SPL and the associated frequency. Thus the
search covered 20 SPLs of 60 Hz bandwidth or a total bandwidth of 1200 Hz.

Once the peak frequency was determined, a quadratic curve was fit through 10

SPL values on each side of the peak. However, the peak SPL and four adjacent

5



SPL values on each side of the peak were eliminated from the quadratic fit. This
allowed the peak to be replaced with a smooth curve fit. The eliminated SPL
values were replaced by SPL values obtained from the quadratic curve fit using
the associated frequency of the eliminated points. Figures 3a through 3d show
the smoothed narrow band data for the same test points at 0° azimuth angle that
are presented in Figures 2a through 2d.

Conversion to One-Third Octave Band Data

The 1024 smoothed 60 Hz bandwidth SPLs were fit into thirty-four (34) one-third
octave bands (OTOB) with the center band frequencies ranging from 31.5 Hz to
50,000 Hz. This was done by converting the 60 Hz bandwidth SPLs to mean

square pressures, and then proportioning the mean square pressure value by the
ratio of the frequency range that was applicable to a particular OTOB frequency
range. These mean square pressure values were then summed over the OTOB

frequency range, and the summed mean square pressure was converted to an

OTOB SPL value. In addition to converting the data to OTOB SPLs, the data

were corrected to obtain Iossless data by removing atmospheric attenuation
effects. The atmospheric attenuation was computed in accordance with the
ANSI method [ref 2].

To account for the different test point flow conditions, the OTOB center band
frequencies were converted to Strouhal Number, ST, which is defined from the

OTOB center band frequency, f, the fully expanded equivalent circular jet

diameter, Dj, and the fully expanded jet velocity, Vj, as follows:

ST= f *Dj /Vj (10)

To plot the data in equal OTOB intervals, the logarithm of the Strouhal Number,

IogST, was used as the X-axis. Figures 4a through 4e show the OTOB SPLs
over IogST range from -1.5 to +1.0 for five selected test points at 0 ° azimuth

directivity angle. Figures 4a and 4b each show 16 spectral plots for the 16
directivity angles for nozzle 3 at nozzle exit pressure ratios of 0.65 and 0.85

respectively. Figure 4c and 4d shows the 16 spectral plots for nozzle 4 operating
at nozzle exit pressure ratios of 1.00 and 1.45 respectively. Figure 4e shows the
16 spectral plots for nozzle 1 operating at a nozzle exit pressure ratio of 1.25.

Also shown on Figures 4a through 4e are the SAE predicted jet noise levels [ref
3] and the combination of the SAE predicted jet noise level and Tam predicted

shock noise level for rectangular jets [ref 4]. For each test point, the average
flow properties from Table I were used to predict the SAE circular jet noise and
the Tam shock noise. The SAE method is for circular jets and therefore does
not vary with azimuth directivity angle. However, the Tam shock noise for

rectangular jets does vary with azimuth directivity angle.
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A review of Figure 4a shows that the contribution of shock noise is minimal. This
is because the jet exit flow Mach number is 1.015, which is near sonic flow.
Since the exit area of the nozzle is larger than the fully expanded jet and the
shock is very weak, the shock noise will probably not exist beyond the nozzle
walls. Figure 4b shows that for nozzle 3 operating at a nozzle pressure ratio of
0.85, there is evidence of shock noise. This can be seen by the sharp rise in the
SPL levels at a IogST value near 0.0 at polar directivity angles below 120
degrees. Figures 4c through 4e also show a significant increase in the SPL
values at IogST values near 0.0 for polar directivity angles below 120 degrees.
These sharp increases in the SPL levels are very near the Tam predicted shock
noise levels [ref 4]. Also the data in Figures 4a through 4e show that at the
higher polar directivity angles, the spectral shape of the measured data is similar
to the spectral shape of the SAE predicted circular jet noise [ref 3].

It should be noted that the Strouhal number is based on the equivalent circular jet
diameter, rather than the hydraulic diameter of the rectangular nozzle. This is
because the peak frequencies of the derived jet noise data are close to the peak
frequencies of the SAE circular jet noise predictions. If the hydraulic diameter
were to be used for the measured jet noise, the Strouhal Number would be
significantly reduced and the data would not be in as good agreement with SAE
predicted jet noise levels.

Removal of Shock Noise

To remove the shock noise component from the data, the measured spectral

shape at each test point and each azimuth directivity angle and polar directivity
angle was individually evaluated to determine what portion of the spectral shape

was solely jet mixing noise. Both low frequency and high frequency measured jet
noise data were edited. The high frequency data of each particular case was
evaluated, and the portion of the spectra not attributed to jet mixing noise was

removed and replaced with the profile of the SAE circular jet prediction. In many
cases, the actual measured data was used as representative of the jet mixing
noise. Figures 5a through 5e show the measured spectra, the predicted SAE

circular jet spectra, and the data fit that was used to represent the measured jet
mixing noise component for the same test points and azimuth directivity angles
as the data presented in Figures 4a through 4e.

Figures 5a through 5e show for the X axis, the IogST values range from -2.0 to
+1.0, whereas Figures 4a through 4e showed the IogST values range from -1.5

to +1.0. Figures 5a through 5e show that at the very low frequencies the
measured SPL levels decrease as the IogST value increases from -2.0 to -1.8 at

all directivity angles. These measurements are not representative of the jet
mixing noise component, and therefore were not included as part of the jet
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mixing noise. Thus, at the low frequency end of the spectra, these removed

measured data points were replaced by extrapolated values that were derived by
fitting a straight line through the low frequency measured jet noise data. Figures
5a through 5e show the dashed line at the low end of the spectra for all the polar

directivity angles. These dashed lines represent the low frequency jet mixing
noise levels associated with the measured data.

Figure 5a shows that at the high frequency end of the spectra, the measured

data were used, since there was not an abrupt shift in the data. Figures 5b
through 5d show that at the low polar directivity angles, there is a shift in the

spectra and that the high frequency jet mixing noise was estimated by using a
shifted SAE predicted curve that is represented by the dashed line on the figures.
At the high polar directivity angles, Figures 5b through 5e show that the
measured data spreads out, which may be attributed to shock noise. Therefore,

the SAE predicted profile was shifted to pass through the high frequency data

prior to spreading out. The dashed lines shown in figures 5a through 5e
represent the jet mixing noise that was used in the analyses.

The measured data presented in Figures 4a through 4e and 5a through 5e are

reasonably smooth and the separation of the jet mixing noise from the shock
noise is not unreasonably difficult. However there are other test points where the

separation of the jet mixing noise from the shock noise is not very well defined.
Figures 6a through 6d show measured test data for four different test points at 0 °

azimuth directivity angle. Figures 6a and 6b show the data for a nozzle pressure
ratio of 0.85 for nozzle 4 and nozzle 5 respectively. Figures 6c and 6d show the

data for a nozzle pressure ratio of 1.25 for nozzle 4 and nozzle 5 respectively.
Also shown on these figures are the predicted SAE circular jet noise levels and

the combined SAE jet noise and Tam rectangular shock noise prediction. These

figures show that the scatter of the measured data over the frequency range,
makes it very difficult to separate the jet mixing noise component from the shock

noise. This is true at both the high polar directivity angles and the low polar
directivity angles. Therefore considerable engineering judgment went into
defining the jet mixing noise characteristics of these particular data points.

Figures 7a through 7d show the estimated jet mixing noise levels used in the

analyses for the same four test points of Figures 6a through 6d. Also shown on
Figures 7a through 7d are the predicted SAE circular jet noise levels. As

previously stated the shape of the SAE predicted jet noise levels at the high
frequency end were used to define the high frequency jet mixing noise levels.

There is probably considerable discrepancy between the actual jet mixing noise
levels of these four test points and the estimated jet noise levels used in the
analyses.
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The jet noise profiles employed in this study are modeled after the predicted SAE
jet noise [ref 3] profiles. It should be pointed out that Tam, Golebiowski, and
Seiner [ref 5] found that the jet noise spectrum was made up of two independent
noise components; the large turbulent/instability waves and the fine-scale
turbulent noise. The large turbulence/instability wave noise has a relatively sharp
peak, whereas the fine-scale turbulent noise component has a very broad peak
and rolls off gradually. Thus, to obtain the jet noise component, overlaying the
two jet noise components of Tam, et al [ref 5] would probably be more
representative than the SAE prediction method profile [ref 3].

The other significant item presented by Tam [ref 5] is that under certain jet
operating conditions, the screech tones of an imperfectly expanded jet can be
very intense. When this happens, the jet flow is drastically changed and the
turbulence level is greatly increased. This results in broadband amplification of
fine-scale turbulence noise. This amplification could easily result from the
screech tones associated with several of the test points including those
presented in Figures 2b through 2d.

ANALYSIS OF JET MIXING NOISE

The jet mixing noise analysis involves deriving the overall power level and the
polar directivities, the azimuth directivities, and the spectra content for each test

point. To obtain the polar directivities, for each test point at each azimuth
directivity angle and each polar directivity angle, the derived jet mixing noise

spectra were adjusted such that the summation of the spectra over all the
frequencies was equal to 1.0. The overall sound pressure levels at each

azimuth directivity angle and each polar directivity angle were adjusted to
compensate for the corrections to the spectra. These corrected overall sound

pressure levels were then employed to obtain the overall power level and the
associated directivities.

Adjustment of Spectral Distribution

At each azimuth directivity angle and each polar directivity angle at each

frequency, there is a measured spectral distribution factor, Fm, that is computed

as the difference between the measured overall sound pressure level, OASPL m,

and the measured one-third octave band jet noise sound pressure level, SPL m.

Fm(f,e,_ ) = SPL m (f,e,_) - OASPLm(e,e) (11)

For each azimuth angle, these spectral distributions at each one-third octave
center band frequency were smoothed over the range of directivity angles using



second order polynomial least squares fits. The second order polynomial
equations were then used to obtain a revised spectral distribution function,

FR (f,e,_), for each frequency at directivity angles ranging from 60 degrees to

160 degrees in 10 degree increments.

For each aspect ratio nozzle, a jet velocity was defined as that velocity that

corresponds to a Strouhal Number of 0.01 and a frequency of 50 Hz and the

equivalent jet diameter of the particular nozzle. The arbitrary jet velocity was
defined as follows:

Vjnew = 50 * Dje t * 0.01 (12)

This new jet velocity was then used to define the Strouhal Numbers that

correspond to the 29 one-third octave center band frequencies ranging from 50

Hz to 31,500 Hz. An interpolation was performed on the IogST values to define a

revised spectral distribution function, F R (f, e,(l) ) at each of the specified
frequencies. The revised spectral distribution functions were then summed over

the 29 frequencies at each polar directivity angle for each azimuth directivity

angle to obtain a spectral summation, Fsum(e,(1) ).

Fsum(e,_ ) = _ 10.0 [ FR (f,e,(I)) / 10.0]

f
(13)

For any prediction method, the spectral summation must be equal to unity.

However, the spectral summations of the measured data for the 11 polar

directivity angles and 9 azimuth directivity angles of the 20 test points ranged

from 0.825 to 1.356. Typically, however the summations ranged between 0.90

and 1.10. Table III shows the spectral summations for the same 4 test points

that were presented in Figures 2a through 2d at each azimuth directivity angle

and each polar directivity angle. Table III shows that at the polar directivity angle
of 160 degrees there is a larger spread in the summations. This is because the

measured data was extrapolated from the polar directivity angle of 157.5
degrees.

The spectral distribution values for each frequency were corrected by the

reciprocal of the spectral summation value corresponding to the polar directivity

angle and azimuth directivity angle as follows:

Fne w (f,e,_)) = F R (f, e,_) )- 10.0 * log10 [Fsum(e,_) ) ] (14)
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To compensate for the changes in the spectral distribution values, the Fsu m

values were applied to the particular overall sound pressure level value,
OASPL(e,_), in accordance with equation 8 below. Thus, the sum of the

directivity value and spectral distribution factor at a particular frequency and polar

directivity angle result in the same total as the uncorrected sum of the directivity
and spectral distribution factor.

Computation of Overall Sound Pressure Levels

The measured overall sound pressure level, OASPLm(e,$), at each of the 16

polar directivity angles and nine azimuth directivity angles was obtained by

summing the derived measured jet noise spectra, SPL m (f,e,$) over the
frequency range.

OASPLm(e,_) = T'. SPLm (f,e,t#)
f

(15)

At each azimuth directivity angle, $, the OASPLm(e,$) values were curve fit in

terms of polar directivity angle using a second order polynomial in a least
squares sense to obtain smoothed OASPL values. The second order

polynomials were then used to obtain revised measured overall sound pressure

levels, OASPLR(e,(_ ), at directivity angles ranging from 60 degrees to 160

degrees at each azimuth directivity angle. Table IV lists the OASPLR(e,_ ) values

as a function of polar directivity angle and azimuth directivity angle for each of

the four test points presented in Figures 2a through 2d.

As previously stated, the OASPLR(e,$) values were adjusted by the changes in

the summation of the spectral distribution factors at each polar directivity angle at
each azimuth directivity angle to obtain corrected overall sound pressure levels,

OASPLc(e,e).

OASPLc(e,$ ) = OASPLR(e,$) + 10.0 * Ioglo [Fsurn(e, _ ) ] (16)

Table V lists the OASPLc(0,e) values as a function of polar directivity angle and

azimuth directivity angle for each of the four test points presented in Figures 2a
through 2d.
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Computation of Overall Power Levels

The next step in the process is the computation of the overall power level,
OAPWL. The overall power level is the integration of the intensity level over the

surface area of the sphere. Since the measured data only exists at directivity
angles between 60 degrees and 160 degrees, an overall power level was

computed for only that portion of the sphere. The measured overall power level
was computed from the intensity levels associated with the measured overall

sound pressure levels, OASPLm(e,e), and the associated areas. The measured

intensity level, ILm, is computed from the overall sound pressure level as follows:

ILm(e,e) = Pref2 / (2 * po=* Coo) * 10.0 [OASPLm(e,Q)/10.0] (17)

For a sphere of radius r, the area associated with a particular polar directivity

angle, ej, and azimuth directivity angle, el, is defined by:

A(ej,ej) = 4r 2 * [ (el +1" el .1)/2 ] * [ cos ((ej + 8j.1)/2 ) - cos ((ej + ej+l)/2)] (18)

The measured overall power level, OAPWL m , is then computed from the sum of

the products of the intensity levels and the areas as follows:

OAPWLm = '_' _ ILm(eJ,el) * A(ej,el) (19)
e

The overall power level in decibels, OAPWLdB, is defined from the OAPWL and

the reference power level, OAPWLre f , as follows:

OAPWLdB = 10.0 * log 10 [OAPWLm / OAPWLref ] (20)

In addition to the OAPWL m , the corrected overall power level, OAPWL c , was

computed using the OASPLc((),e) values. Also a predicted overall power level,

OAPWLp, was computed for the same range of polar and azimuth directivity

angles using predicted overall sound pressure levels from the SAE circular jet
prediction method [ref 3]. All these OAPWLs are based on that portion of the
sphere for polar directivity angles ranging from 60 ° to 160 °. Table VI lists these

OAPWL values for the 20 test points corresponding to the five operating pressure
ratios for each of the four rectangular nozzles.
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The SAE prediction method was used to predict OASPLs over the range of

directivity angles from 0 ° to 180 °. These OASPLs were then used to predict an

overall power level, OAPWLptot, over the entire twelve (12) foot radius spherical

area rather than the spherical area between 60 ° and 160. The OAPWLptot

values are presented in Table VI and are greater than the OAPWLp values for
the partial sphere.. Table VI presents the difference between the predicted

partial sphere and predicted total sphere values of OAPWL for each of the 20

test points.

These differences in predicted OAPWLs between the partial sphere and total

sphere were applied to the corrected measured data to obtain corrected total

overall power levels, OAPWLctot, for the total sphere in accordance with

equation 13 as follows:

OAPWLctot = OAPWL c + (OAPWLptot - OAPWLp) (21)

These values are also presented in Table VI for each of the 20 test points.

The spherical surface area for the range of polar directivity angles, 01 and 02, is

computed as follows:

A s = 2 1"1;r2 * [cos(01) - cos(02) ] (22)

Associated with each of the OAPWL values is an average overall sound pressure

level, OASPLavg, that is computed from the ambient conditions and the spherical

surface area, A s , as follows:

OASPLavg = 10.0 * log 10 [ OAPWL * (2 * p_ * C_ ) / ( A s * Pref 2 ) ] (23)

Also presented in Table VI are the associated average overall sound pressure

levels, OASPLctot , corresponding to the corrected overall power level,

OAPWLctot.

The SAE predicted overall power level of the circular jet, OAPWLcirc jet , is
defined in reference 3 as a function of the ratio of the jet density to the ambient

density, (pj*), the ratio of the jet velocity to the ambient speed of sound, (Vj*),

and the ambient density, (poo), the ambient speed of sound, (Coo), and the jet exit

area, (A j) as follows:

OAPWLcirc jet = 6.67"10 -5 * (pj,)c0 . (Vj.)8 . p (Vj*) * poo 0oo 3 * Aj (24)
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where the parameters co and P (Vj*) are tabulated as functions of Vj* in the SAE
circular jet prediction method [ref 3].

The OAPWL values for the whole sphere obtained from the OAPWL equation
from the SAE prediction method [ref 3] are 2 to 3 dB greater than the OAPWL

values computed from the product of the predicted intensity levels and areas in
accordance with equations 19 and 20 above. Table VI shows the SAE predicted
overall power level values using equation 24. Also shown are the differences

between these OAPWLcirc jet values and the total corrected overall power levels

for the rectangular jets, OAPWLctot. This difference is defined as z_OAPWL.

DEVELOPMENT OF PREDICTION METHOD

The development of the prediction method consists of the same approach as the
SAE method for circular jets [ref 3]. That is correlations are made for the overall

power level first, then for the polar directivity angle, then the azimuth directivity
angle, and lastly the spectra distribution. The correlations were obtained by
using the particular parameter such as frequency, f, azimuth directivity angle,e,

and polar directivity angle,(l), where applicable. In addition two other parameters
were used, the nozzle exit fully expanded aspect ratio, AR, and the normalized

jet velocity, Vj*. The coefficients for the pertinent parameters used in each of the

correlations were obtained using Data Desk statistical software program [ref 6].

Correlation of Overall Power Level

The measured difference in overall power level, AOAPWLm, between the overall

power level of the circular jet, OAPWLcirc jet, and the corrected overall power

level of the rectangular jet, OAPWLctot, was thought to be a function of both

aspect ratio, AR, and the logarithm of the normalized jet velocity, IOgl0(Vj*),

where Vj* is the ratio of the jet velocity, Vj, to the ambient speed of sound, Coo.

The correlation was performed using a constant term, an AR term, an AR 2 term,

a IOgl0(Vj*), a [lOgl0(Vj* ) ]2, and the cross products of these terms as follows:

AOAPWL m = function (AR, AR2, IOgl0(Vj* ), [lOgl0(Vj* ) ]2 ) + constant (25)

The resultant statistical correlation performed with Data Desk [ref 6] showed that

the jet velocity had very little effect on the _OAPWL m. For the twenty test points,
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the least squares fit for the predicted difference in overall power level, AOAPWLp
is defined as follows:

z_OAPWLp = 4.8902 + AR * (0.1025"AR - 1.4020) (26)

Table VII also shows for each of the 20 test points, the nozzle number, the

pressure ratio, the aspect ratio, the velocity term, the measured &OAPWL value,

AOAPWL m , the predicted AOAPWL value, AOAPWLp, from equation 26, and

the difference between the two values. Table VII shows that the test point

corresponding to nozzle 5 at a pressure ratio of 0.85 had a very large

discrepancy between the measured z_OAPWL value and the predicted AOAPWL

value. This is one of the cases presented in the section on shock removal, that

was difficult to ascertain where shock noise existed and where jet noise existed.

It was decided to rerun the correlation using the other 19 test points. For the 19

test points the least squares fit of the difference in overall power level is defined
as follows:

&OAPWLp = 5.7716 + AR * (0.20156"AR - 2.0699) (27)

The result of this fit is presented in Table VIII. The standard deviation of 1.10

dB for the fit presented in Table VIII is considerably less than the standard

deviation of 1.44 dB presented in Table VII. Figure 8 shows the plot of the

AOAPWL against aspect ratio along with the least square fits of the data for both

the 20 test point cases and the 19 test point cases.

The OAPWL for the rectangular jet is as follows:

OAPWLrect jet = OAPWLcirc jet + 0.20156 * AR 2 - 2.0699 * AR+ 5.7716 (28)

Computation of Directivities

The directivity function, D(e,_), is defined from the difference between the

average overall sound pressure level over the total spherical area, OASPLavg,

and the overall sound pressure level at a particular polar directivity angle and

azimuth directivity angle, OASPL(0,_).

D(e,$) = OASPL(e,_) - OASPLavg (29)

For this study, the directivity function was divided into an average polar directivity

function, D(e)avg, and then applying an azimuth directivity correction, D(e,_) c, to
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it. Note that the azimuth directivity correction varies with polar directivity angle.
Thus the directivity is defined as follows:

D(e,_) = D(e)avg + D(e,_) c (30)

For each test point, the average overall sound pressure level at each polar

directivity angle, OASPL(e)avg, was obtained by averaging the corrected

OASPLc(e,_) over the range of azimuth angles at each polar directivity angle as
follows:

OASPL(e)avg = [ _ OASPLc(e,(1) ) ] / 7 (31)

There are 7 azimuth angles, 0, 15, 30, 45, 60, 75, and 90 degrees. The

OASPLc(e,0 ) is an average of the OASPLc(e,0 ) and OASPLc(e,180 ). Similarily,

the OASPLc(e,90 ) is an average of the OASPLc(e,90 ) and the OASPLc(e,270 ).

The D(e)avg term is then defined from the average corrected OASPLavg of the

total sphere and the OASPL(e)avg as follows:

D(e)avg = OASPLavg - OASPL(e)avg (32)

Similarly, the azimuth directivity correction is determined from the average polar

overall sound pressure level, OASPL(e)avg ,and the overall sound pressure level

at a particular polar directivity angle and azimuth directivity angle, OASPLc(e,(I) )
as follows:

D(e,(1))c = OASPL(e)avg OASPLc(e,_)) (33)

Table Vl lists the values of OASPLavg for all 20 test points, and Table V lists the

values of OASPLc(e,_) for the same four test points as shown in Table II. Table

IX lists the average polar directivities, D(e)avg, and the azimuth directivity

corrections, D(e,_))c, for the same four test points that were presented in Table II.

At each directivity angle over the range from 60 degrees to 160 degrees, the
average polar directivity was evaluated for those 19 test points of Table VIII that
were used for curve fitting the overall power levels.
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Correlation of Average Polar Directivity

The average polar directivities, D(e)avg, were correlated against the aspect ratio,

AR, the log of the normalized jet velocity, IOgl0(Vj*), and the polar directivity

angle, e, as well as the square of these terms and the cross products of all these

terms and their squares. The least squares fit of all these terms was made

against polar directivity angles ranging from 60 degrees to 160 degrees using the
Data Desk program [ref 6]. The polar directivity equation was defined as follows:

V* ]2D(e)avg = function {8, e2, AR, AR 2, , log10 ( j ), [IOgl0(Vj* ) } + C (34)

The initial least squares fit for the range of directivity angles from 60 degrees to

160 degrees resulted in a standard deviation that was significantly greater than
1.0 dB. Therefore, the directivity fit-was divided into two parts. A least squares

fit was performed over the range of polar directivity angles from 60 degrees to
150 degrees. This least squares fit was applied to polar directivity angles from
60 degrees to 140 degrees and is written as follows:

D(e)l = -11.89 + AR*(1.089 - 0.0646"AR) + e2"(2.325 - 0.009022 * AR 2) (35)

where AR is the aspect ratio of rectangular jet and 8 is the polar directivity angle

in radians as measured from the jet inlet. It should be noted that the jet velocity

term, Ioglo(Vj* ), was not a significant contributor to the polar directivity for

directivity angles between 60 degrees and 140 degrees. The standard deviation

for the polar directivity of equation 35 is 1.00 dB.

A second least squares fit was applied to polar directivity angles from 150
degrees to 160 degrees. This least squares fit is as follows:

D(e)2 = -19.13 + AR* {3.315"8- 49.60" [Ioglo(Vj*)] 2} +

0 2* {4.000- 1.513" IOgl0(Vj* ) + AR* {0.0107- 1.407*AR)} (36)

where AR is the aspect ratio of rectangular jet, 8 is the polar directivity angle in

radians as measured from the jet inlet, and V j* is the normalized fully expanded

jet velocity as referenced to the ambient speed of sound. The standard deviation

of the polar directivity obtained with equation 36 is 1.17 dB. For polar directivity
angles between 140 degrees and 150 degrees, the polar directivity is obtained by
interpolation between equation 35 and equation 36 as follows.

D(e)3 = D(0)l + [D(8)2- D(e)l ] * (e * 180/_- 140 °) / 10.0 (37)
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The average overall OASPL at a particular directivity angle is obtained by

applying the directivity correction to the average OASPL values obtained from

the overall power level. Thus equation 32 can be rewritten as follows:

OASPL(e)avg = OASPLavg + D(8) (38)

The overall sound pressure level at a particular polar directivity angle and

azimuth directivity angle also depends on the azimuth directivity.

Correlation of Azimuth Directivities

The azimuth directivity, D(_), was correlated against a corrected azimuth angle,

ec, the polar directivity angle, e, the aspect ratio, AR, and the logarithm of the

normalized jet velocity, IOgl0(Vj*), and the squares of all these parameters as
follows:

D(e) = function {_C, _C2, 0, e 2, AR, AR 2, log10 (V*J), [IOgl0(Vj*)] 2} (39)

Where the corrected azimuth angle, _c, is the difference between the azimuth

angle as measured from the center of the nozzle exit as shown in Figure 1, and

the azimuth angle of the comer, %orn, where t_corn is derived from the aspect

ratio. The equations for the corrected azimuth angle and the corner azimuth
angle are as follows:

t_c = _" _corn (40)

_corn = arctan (1 / AR ) (41)

As in the case of the polar directivity, the azimuth directivity was correlated

against all these terms and the cross products of these terms using Data Desk

program [ref 6]. As in the case of the polar directivity, the azimuth directivity

correlation was made for two different ranges of polar directivity angles. The first

azimuth directivity, D($)1, is applicable to polar directivity angles from 60 degrees

to 140 degrees, and is defined as follows:

D(_)I = _c* {2.352 - e * (3.397 - 1.084"e) - _c * (1.507- 0.7904*0

- 0.0490*AR) } + AR * [0.3955 - e * (0.4559 - 0.1163"9) ] (42)
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It should be noted that like the polar directivity, the azimuth directivity for polar
directivity angles from 60 degrees to 140 degrees is not dependent on the jet

velocity. The standard deviation in azimuth directivity for polar directivity angles
from 60 degrees to 140 degrees is 0.21 dB.

For polar directivity angles between 150 and 160 degrees the azimuth directivity

is defined from the corrected azimuth directivity angle, the polar directivity angle,
the aspect ratio, and the fully expanded jet velocity as follows:

D(_)2 = _c* {3.624*0- 8.493- 0.3159"AR "_c* (0.3169"AR + 0.9787"t_c) }

+ AR*(0.3893*e - 1.028) + IOgl0(Vj* ) * (8.478 + 14.62"_c )

+ [iogl0(Vj, )]2, (10.85 * AR- 51.73) (43)

At polar directivity angles between 150 degrees and 160 degrees, the jet velocity
term is included in equation 43. The standard deviation is 0.44 dB for the
azimuth directivity at polar directivity angles from 150 degrees to 160 degrees.

For polar directivity angles between 140 degrees and 150 degrees, the azimuth
directivity is obtained by interpolation between method 1 and method 2 as
follows.

D(e) = D(e)l + [D(e)2- D(e)l ] * (e- 140 °) / 10.0 (44)

At a particular directivity angle, e, and azimuth angle, _, he overall sound

pressure level, OASPL(e,_), is obtained by correcting the average sound

pressure level associated with the overall power level, OASPLavg, for the polar
directivity term, D(e), and the azimuth directivity term, D(e), as follows:

OASPL(e,e) = OASPLavg + D(e) + D(_) (45)

The jet mixing noise at a particular directivity angle, azimuth angle, and frequency
is computed by applying a spectral term to the overall sound pressure level term.

Correlation of Spectra Function

The spectral distribution consists of defining the frequency in terms of Strouhal

Number, Stpeak, and magnitude of the spectral peak relative to the overall sound

pressure level, ASPLpeak, at each polar directivity angle and azimuth directivity
angle. The spectral shape relative to the spectral peak is then defined by dividing
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the spectra into four segments. Figure 9 shows the various segments used to
define the spectral shape.

The location of the peak frequency is defined in terms of the logarithm of the

peak Strouhal Number, IOgl0(Stpeak ). The location and magnitude of the

spectral peaks were defined at each polar directivity angle and azimuth directivity

angle for each of the 20 test points. This data was then correlated against

azimuth directivity angle, ¢c, the polar directivity angle, 0 ,the aspect ratio, AR,

and the normalized jet velocity, IOgl0(Vj* ) and the squares of these parameters

using the Data Desk software package [ref 6] to obtain correlations. Unlike the

directivity correlations, the spectra correlations were defined using one equation

over the range of polar directivity angles from 60 degrees to 160 degrees.

The location of the peak Strouhal number, log 10(Stpeak), is defined as a function

of the corrected azimuth directivity angle, _c, the polar directivity angle, e ,the

aspect ratio, AR, and the normalized jet velocity, IOgl0(Vj* ) , as follows:

log 10(Stpeak) = -0.9383 + 0.0217 * % + 0 * (1.437 - 0.4761"e)

- 0.0129 * AR - IOgl0(Vj* ) * [2.195 - 10.13 * IOgl0(Vj* ) ] (46)

The magnitude of the peak sound pressure level relative to the overall sound

pressure level, _SPLpeak , relative to the overall sound pressure level at a

particular directivity angle and azimuth angle is defined as follows:

ASPLpeak = 5.034 + e * (6.988 - 2.190"e) + AR * (0.3014 - 0.0405*AR)

-log 10(VJ*) * [5.425 - 64.47 * log 10(V J*) ] (47)

Equation 47 shows that the relative peak SPL value, z_SPLpeak, is independent
of azimuth angle, ¢. For a particular test point at a particular polar directivity

angle and azimuth directivity angle, the peak SPL value, SPLpeak(8, ¢) is defined
from the overall sound pressure level, OASPL(e, ¢), and the relative peak sound

pressure level, &SPLpeak, as follows:

SPLpeak(e, ¢) =, OASPL(e, ¢) - ASPLpeak (48)
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Once the peak is located the shape of the spectral distribution about the peak
can be ascertained. The spectral shape was divided into four segments as
shown in Figure 9. Two segments for frequencies that are less than the peak
frequency, and two segments for frequencies that are greater than the peak
frequency. The first segment is a circular segment that ranges from the spectral
peak to four one-third octave bands below the spectral peak as shown on Figure
9. The radius of this arc is defined by performing a least squares fit using the
Data Desk program [ref 6] of the spectra data for each of the azimuth angles and
directivity angles for each of the 20 test points. The results of the fit show that
the radius of the curve, C, is defined as follows:

C = 55.93- e * (58.91 - 20.25*8) - AR * (5.039- 0.8248"AR)

+ Ioglo(Vj*) * [179.5 - 1511.0 * IOgl0(Vj*) ] (49)

Equation 49 shows that the radius of curvature is not affected by the azimuth

angle,(I). For logarithm of the Strouhal number, Ioglo(St ), ranging from

[log10(Stpeak)- 0.4] to log10(Stpeak)the SPL value is defined as follows:

SPL(St,8, _) = SPLpeak(e,_)) - C * [log 10(St) - IOgl0(Stpeak) ]2 (5O)

The second segment is for frequencies corresponding to Strouhal numbers that

have logarithms less than [IOgl0(Stpeak ) -0.4]. The spectral shape is defined

by a straight line that has a slope,E, and an intercept, F. Like the radius of

curvature, C, the E and F parameters shown on Figure 9 are functions of the

corrected azimuth angle, (l)c, the polar directivity angle, e ,the aspect ratio, AR,

and the normalized jet velocity, log 10(V J*) , and the squares of these parameters
as follows:

E = -19.34 + (_c * (0.9042 + 0.3920"_c ) + e * ( 15.65 - 5.654*8)

- AR * (3.136 - 0.2594"AR) - IOgl0(Vj* ) * [50.08 - 109.5 * IOgl0(Vj* ) ] (51)
and

F = 3.182 - 0.2162 * (_c" e * ( 7.574 - 2.414"8) - AR * (2.361 - 0.2602"AR)

+ Ioglo(Vj*) * [7.123 - 200.0" IOgl0(Vj*) ] (52)

The second segment equation for the sound pressure levels, SPL(St,e, (I)), at the

low end of the spectra, { log 10(St) < [log 10(Stpeak) - 0.4] }, is defined from the
slope E and the intercept F as follows:
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SPL(St,e, _) = SPLpeak(e , _) -E * [ IOgl0(St ) -IOgl0(Stpeak ) ] - F (53)

The third segment is a circular segment that ranges from the spectral peak to four
one-third octave bands above the spectral peak as shown on Figure 9. The
radius of this arc is defined by performing a least squares fit using the Data Desk

program [ref 6] of the spectra data for each of the azimuth angles and directivity
angles for each of the 20 test points. The results of the fit show that the radius of
the curve, D, is defined as follows:

D = 71.34 - e * (70.86 - 21.60"e) - AR * (3.207 - 0.3976"AR)

+ Ioglo(Vj*) * [47.01 - 600.5*loglo(Vj* ) ] (54)

Equation 54 shows that the radius of curvature is not affected by the azimuth

angle,_. For logarithm of the Strouhal number, IOgl0(St), ranging from

log 10(Stpeak) to [IOgl0(Stpeak ) + 0.4] the SPL value is defined as follows:

SPL(St,B, _) = SPLpeak(e , _) - C * [ IOgl0(St ) - IOgl0(Stpeak ) ]2 (55)

The fourth segment is for frequencies corresponding to Strouhal numbers that

have logarithms greater than [IOgl0(Stpeak ) + 0.4] . The spectral shape is
defined by a straight line that has a slope,G, and an intercept, H. The G and H

parameters shown on Figure 9 are functions of the corrected azimuth angle, _c,

the polar directivity angle, e ,the aspect ratio, AR, and the normalized jet velocity,

log 10(VJ*) , and the squares of these parameters as follows:

G = 20.61 + 0.8340 * _c" e * ( 18.58 - 5.587"e) + AR * (0.8998 - 0.1061"AR)

+ 37.58 * log 10(v J*) (56)
and

H = 3.906 - 0.2297 * _c" e * ( 4.228 - 1.246"e) - AR * (0.9532 - 0.1022"AR)

- 64.11 * IOgl0(Vj* ) (57)

The fourth segment equation for the sound pressure levels, SPL(St,B, _), at the

high end of the spectra, { < [IOgl0(Stpeak ) + 0.4] < IOgl0(St ) }, is defined from
the slope G and the intercept H as follows:

SPL(St,B, _) = SPLpeak(e, _) - G * [log 10(St) - log 10(Stpeak ) ] - H (58)

22



It should be noted that sometimes there are disjoints between the segments.
Because of time constraints, a smoothing was not applied to these disjoints. The
disjoints are especially pronounced between segments 1 and 2.

RESULTS

The empirical prediction method that was developed provides a method for
computation of jet mixing noise for cold flow rectangular jets. The method was

applied to all the test cases in the database and the results appear to be
satisfactory. Comparisons of the predicted and derived jet mixing noise levels

for a few of the test points are discussed.

Prediction Method

The overall power level for rectangular jets was defined by computing the overall

power level of circular jets using the SAE method [ref 3] and then applying a
correction factor that is a function of aspect ratio. From the overall power level,
the average overall sound pressure level over a sphere of a specified radius can
be computed. Next a polar directivity correction is applied to the average overall

sound pressure level to obtain an average overall sound pressure level at a

particular polar directivity angle. This polar directivity is a function of polar
directivity angle and aspect ratio. Also at directivity angles above 140 degrees,

the polar directivity is dependent on the normalized jet velocity. The overall
sound pressure level at particular azimuth directivity is obtained by adding an

azimuth directivity correction to the average overall sound pressure level at a
particular polar directivity angle. This azimuth directivity angle was found to be a

function of aspect ratio, normalized jet velocity, polar directivity angle, and
azimuth directivity angle. The last step in the process is defining the spectra
shape. The spectra shape was broken down into four specific regions. First the

frequency location and sound pressure level magnitude of the spectra peak were
defined. Next the spectra content relative to the peak point were defined. Thus
the sound pressure level at a particular frequency is determined by correcting the

overall sound pressure level at a particular polar and azimuth directivity for the
peak magnitude and then adding the correction for the spectra magnitude at a
particular frequency relative to the peak.

Comparison of Predicted and Derived Jet Mixing Noise Levels

For the same five test points presented in Figures 4 and 5, Figures 10a through
10e show comparisons of the predicted jet mixing sound pressure levels with the

sound pressure levels of the jet mixing noise that were derived from the data,
and the measured data that includes shock noise. The figures present the
comparisons of the predicted SPL values with the derived SPL values at 14 polar

directivity angles ranging from 60 degrees to 157.5 degrees at 0-degree azimuth
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angle. The test points include nozzle 3 at a nozzle exit pressure ratio of 0.65,
nozzle 3 at a nozzle exit pressure of 0.85, nozzle 4 at nozzle exit pressure of
1.00, nozzle 4 at a nozzle exit pressure of 1.45, and nozzle 1 at a nozzle exit
pressure of 1.25.

Figure 10a is for an aspect ratio 3.70 nozzle with a jet exit Mach Number of
1.015, thus there is virtually no shock noise present. The figure shows that in the
forward arc, polar directivity angles below 120 degrees, the location and
magnitude of the predicted peak Strouhal number compares very well with the
data. At frequencies below the peak frequency, the fairing of the initial slope with
the circular arc around the peak needs to be corrected. In the aft arc, the
predicted peak is generally higher than the measured jet mixing noise levels, and
this is attributed to the fact that this empirical method is not going to fit all the
data exactly.

Figure 10b is for an aspect ratio 3.56 nozzle with a jet exit Mach Number of
1.230. In the forward arc and at polar directivity angles up to 150 degrees, the
predicted jet noise levels are below the derived jet noise levels. Again the
location of the peak frequency is predicted reasonably well. At the directivity
angle of 157.5 degrees, the predicted peak noise level is greater than the derived
jet mixing noise level.

Figure 10c shows an aspect ratio 5.32 nozzle with a jet exit Mach Number of
1.350. In the forward arc, the predicted peak jet mixing noise levels are
approximately 5 dB greater than the derived jet mixing noise levels. In the aft
arc, the predicted jet mixing noise levels are slightly below the derived jet mixing
noise levels. At polar directivity angles above 150 degrees, the predicted values
are as much as 3 dB below the derived values. Again the predicted location of
the peak Strouhal Number compares very well with the data over the range of
directivity angles.

Figure 10d is for an aspect ratio 1.38 nozzle operating at a jet exit Mach Number
of 1.807. In the forward arc, at polar directivity angles up to 135 degrees, the
predicted jet mixing noise levels are 1 dB to 3 dB greater than the derived jet
mixing noise levels. At the higher polar directivity angles, the predicted values
are very close to the derived jet mixing noise values.

Figure 10e shows the comparison of the predicted and derived jet mixing noise
levels for an aspect ratio 4.61 nozzle operating at a Mach Number of 1.608. At
the very low directivity angles the predicted and derived jet mixing noise levels
compare within 1 dB. At polar directivity angles from 80 degrees to 120 degrees,
the predicted jet mixing noise levels range from 1 dB to 2.5 dB above the derived
jet mixing noise levels. At the higher directivity levels, the predicted jet mixing
noise levels compare reasonably well with the derived jet mixing noise levels.
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For all the cases presented in Figures 10a through 10e, the location of the peak
Strouhal Number was predicted very well over the range of directivity angles.
The data is often not extremely well behaved, and this report shows that deriving
the jet mixing noise from the measured data is an art. Thus there are some
discrepancies in the derived data. The prediction method does not seem to be
affected by jet exit Mach Number, but is affected by aspect ratio. At low aspect
ratios, the method predicts the jet mixing noise component better than at the high
aspect ratios.

Figures 1la through 1le show comparisons of predicted jet mixing noise levels
with derived measured jet mixing noise levels for the same four cases as shown
in Figures 5 and 6, where it was difficult to separate out the shock noise. The
four cases shown in Figure 11 are for nozzles 4 and 5 operating at nozzle exit
pressure ratios of 0.85 and 1.25 respectively. The aspect ratios vary from 4.909
to 7.314 and the jet exit Mach Number varies from 1.230 to 1.507.

Figure 1la shows that the predicted jet mixing noise levels are generally 2 dB
less than the derived values at polar directivity angles below 140 degrees.
Figure 11b also show that at all directivity angles, the predicted levels are
considerably less than the derived jet mixing noise levels. However, the derived
jet noise levels may contain shock noise, and the predicted levels are indicative
of jet mixing noise only. Figure 11c shows that at the very low polar directivity
angles, the predicted mixing noise levels are 5 dB less than the derived jet
mixing noise levels. At polar directivity angles from 75 degrees to 135 degrees,
the predicted noise values are generally 2 dB less than the derived jet mixing
noise levels. At polar directivities above 140 degrees, the predicted values are
larger than the derived jet mixing noise levels. Figure 11d shows that at polar
directivity angles from 60 degrees to 135 degrees, the predicted values are about
2 dB less than the derived jet mixing noise levels. At the high directivity angles,
the derived jet mixing noise levels are about the same as the predicted values,
although the predicted peak Strouhal Numbers are generally higher than the
derived peak Strouhal Numbers.

Although Figure 11 shows discrepancies between the predicted and derived jet
mixing noise levels, the predicted jet noise levels can give some insight as to the
characteristics of the data. For example, what was thought to be shock noise is
really jet mixing noise, and what was thought to be jet mixing noise in the data,
may really be shock noise. Thus the prediction method may provide more insight
to allow a more scientific method of defining and removing the shock noise
component from the total jet noise.

Both Figures 10 and 11 show that there are discrepancies between the derived
and predicted jet mixing noise levels at polar directivity angles of 157.5 degrees,
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whereas at polar directivity angles of 150 degrees, the discrepancies between
the predicted and derived values are minimized. This is due to the fact that in

many of the tests there are significant differences between the measured data at

a polar directivity angle of 150 degrees and the measured data at polar directivity
angle of 157.5 degrees. At measurement distances of 36 to 80 nozzle

diameters, it is anticipated, that the sound waves at adjacent polar directivity
angles would experience some interaction, thus reducing the differences at
adjacent polar directivity angles. The fact that the prediction method does

involve curve fitting, allows for this interaction, and may actually be more
representative of the jet mixing noise characteristics than the data measurements
that have been corrected for shock noise and screech tones.

Figures 10 and 11 show disjoints between segments 1 and 2 in the prediction.

These disjoints are due to the fact that because of time constraints no attempts
were made to perform a smoothing between segments. It is recommended that

the spectral prediction method be modified to incorporate a smoothing method
for merging segments.

CONCLUSIONS AND RECOMMENDATION_

This report presents an empirical method for predicting the jet mixing noise
characteristics for rectangular jets operating at cold flow conditions. The jet
mixing noise prediction involves computing the overall power level first, and then

obtaining an average overall sound pressure level based on the spherical radius.

The overall sound pressure level at a particular directivity is then defined by
adding terms adding terms for the average polar directivity and the azimuth
directivity to the average overall sound pressure level. To obtain the sound

pressure level at a particular frequency, the spectra content of the jet mixing
noise is defined and the spectra term is added to the overall sound pressure level

at the particular directivity. Each of these noise component parameters is
defined as a function of the rectangular jet aspect ratio, the normalized jet

velocity, the polar directivity, and azimuth directivity. Of course the overall power
level is not dependent on the directivities. Similarly, the average polar directivity
is not dependent on the azimuth directivity angle. Because of the existence of

disjoints between segments in the prediction of the spectra shape, it is
recommended that the spectra shape prediction be modified to incorporate a
smoothing function in the area where two segments merge.

The correlations are predicated on the jet noise spectra characteristics being
similar to the spectra characteristics of the circular jet. A recent analysis of the

data by Tam etal [ref 5 ] indicated that the jet mixing noise may have two
spectral components, the large turbulent/instability waves, and the fine-scale

turbulent noise. However, the jet noise spectra shapes do appear to resemble
the SAE predicted circular jet spectral shape [ref 3]. Therefore the empirical
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prediction method is predicated on the SAE circular jet prediction method in
terms of spectra shape as well as overall power level.

It is recommended that the study be continued to incorporate temperature
effects. This can be accomplished initially by incorporating temperature
correction tables from the SAE circular jet prediction method into the polar
directivity and into the spectra. Also there is limited high temperature rectangular
jet data available that could be used to ascertain the validity of the temperature
corrections. Finally it is recommended that additional model tests be conducted
with contoured rectangular jet nozzles to minimize the shock noise and to
establish a high temperature database for rectangular jet mixing noise.
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TABLE VII. Evaluation of Aspect Ratio and Jet Velocity on
Derived Overall Power Level Correction for 20 Test Points

DERIVED OAPWL - 0.1025 * AR**2 - 1.4020 * AR + 4.8902
NOZZLE PRESSURE ASPECT LOG 10 MEASURED

RATIO RATIO VJ/CA OAPWL DIFF

AR dB

DERIVED DELTA OAPWL
OAPWL DIFF

dB dB
1
3

4
5
1

3
4
5

1
3
4

5
1

3
4
5
1

3
4
5

0.65 1.8721 0.0516 2.26 2.6248 -0.3648

0.65 3.6992 -0.0334 1.92 1.1066 0.8134
0.65 5.7959 -0.0340 1.99 0.2077 1.7823

0.65 7.6028 -0.0342 1.72 0.1559 1.5641
0.85 1.6512 0.1045 2.57 2.8547 -0.2847
0.85 3.5586 0.0331 -0.83 1.1991 -2.0291

0.85 5.5754 0.0328 -1.06 0.2598 -1.3198
0.85 7.3148 0.0321 -3.49 0.1193 -3.6093
1.00 1.5379 0.1240 2.97 2.9765 -0.0065
1.00 3.3972 0.0637 2.49 1.3103 1.1 797

1.00 5.3239 0.0631 2.19 0.3314 1.8586
1.00 6.9845 0.0625 1.71 0.0983 1.6117

1.25 1.3827 0.1489 3.57 3.1476 0.4224
1.25 3.1344 0.0975 0.87 1.5028 -0.6328

1.25 4.9093 0.0972 -0.36 0.4778 -0.8378
1.25 6.4416 0.0964 -0.43 0.1123 -0.6423
1.45 1.2825 0.1597 4.02 3.2608 0.7592
1.45 2.9449 0.1164 0.60 1.6564 -1.0504
1.45 4.6138 0.1160 1.49 0.6037 0.8863

1.45 6.0496 0.1156 -0.04 0.1600 -0.2000

STANDARD DEVIATION = 1.4735

TABLE VIII. Evaluation of Aspect Ratio and Jet Velocity on

Derived Overall Power Level Correction for 19 Test Points

DERIVED OAPWL = 0.20156 * AR**2 - 2.0699 *AR + 5.7716

NOZZLE PRESSURE ASPECT LOG 10 MEASURED DERIVED DELTA OAPWL

RATIO RATIO VJ/CA OAPWL DIFF OAPWL DIFF

1
3
4

5
1
3
4

1

3
4
5
1

3
4
5
1
3

4
5

0.65
0.65

0.65
0.65
0.85

0.85
0.85
1.00

1.00
1.00
1.00

1.25
1.25
1.25
1.25
1.45

1.45
1.45

1.45

AR
1.8721

3.6992
5.7959
7.6028
1.6512

3.5586
5.5754
1.5379

3.3972
5.3239
6.9845

1.3827
3.1344
4.9093
6.4416
1.2825

2.9449
4.6138

6.0496

0.0516
-0.0334
-0.0340
-0.0342

0.1045
0.0331
0.0328

0.1240
0.0637

0.0631
0.0625
0.1489
0.0975
0.0972
0.0964

0.1597
0.1164
0.1150

0.1156

dB

2.26
1.92
1.99

1.72
2.57
-0.83
-1.06

2.97
2.49

2.19
1.71
3.57
0.87

-0.36
-0.43
4.02
0.60

1.49
-0.04

dB
2.6030
0.8729

0.5459
1.6857
2.9034

0.9563
0.4969
3.0650
1.0661

0.4649
1.1476
3.2949

1.2640
0.4679
0.8021
3.4485
1.4241

0.5123
0.6265

dB
-0.3430

1.0471
1.4441
0.0343

-0.3334
-1.7863
-1.5569
-0.0950

1.4239
1.7251
0.5624

0.2751
-0.3940
-0.8279
-1,?.321
0.5715
-0.8241

0.9777
-0.6665

STANDARD DEVIATION - 1.0955
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